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Adic Spaces – some topics

Warning, I didn’t spend a lot of time typing so some stuff might be wrong.

1 Coherent Sheaves

1.1 small amount of history

Historically the theory of Tate’s rigid analyitic varieties was developed first, and they

were defined as G-topologized spaces (X,OX) locally looking like a Tate-algebra.

However then the underlying space X carried only a Grothendieck topology, and

was no actual topological space. This resulted in bad sheaf theoretic behaviour (for

example a nonzero sheaf that has zero stalks everywhere). In the theory of adic

spaces we have an actual underlying topological space. This part completely follows

the notes [Eug24].

Assume that (A,A+) is a noetherian Huber pair. We want to associate a sheaf to

A-modules, ideally taking values in complete topological rings.

Proposition 1.1. Let (A,A+) be a noetherian Huber pair and let M be an A-

module. Then the presheaf M̃(U) = M ⊗A OX(U) on X = Spa(A,A+) is a sheaf,

and Hi(X, M̃) = 0 for all i ≥ 1. Moreover, the assignment M 7→ M̃ defines an exact

functor from A-modules to OX -modules.

If we focus on coherent sheaves, i.e. those coming from finitely generated A-

modules, we obtain a valid definition for general locally noetherian adic spaces, valued

in complete topological rings (with the following topology).

Proposition 1.2. Assume that (A,A+) is a noetherian Huber pair and that M is

a finitely generated A-module. If An −→ M is a surjection, we equip M with the

quotient topology coming from this surjection, where An has the product topology.

This topology is called the canonical topology and is complete and independent of

the choice of surjection from a finitely generated free module.

The following results implies that fact that a sheaf is coming from a fin. gen.

module does not depend on the cover.

Proposition 1.3. Let (A,A+) be a noetherian Huber pair with X = Spa(A,A+)

and let F be a sheaf of OX -modules on X. Assume that there is a cover (Ui) of

rational subsets and finitely generated OX(Ui)-modules Mi such that F|Ui
= M̃i for

all i. Then there is a finitely generated A-module M such that F = M̃ .

So now we can define general coherent sheaves.
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Definition 1.4. Let X be a locally noetherian adic space. An OX -module F is called

coherent if there is a cover (Ui) of X by affinoid opens Ui = Spa(Ai, A
+
i ) and finitely

generated Ai-modules Mi such that F|Ui
= M̃i for all i.

2 Finiteness properties of morphisms

2.1 Morphisms of finite type

Also completely follows the notes [Eug24] chapter 2, part 7.

We would like to define what finite type means. We cannot proceed as for schemes

since if we were to just base it on rings maps of finite type, the Tate algebra k⟨T ⟩ is
not of finite type over k. Instead, we have to take a big detour.

Definition 2.1. A homomorphism R −→ S of complete Huber rings is a quotient

map if it is surjective, continuous, and open. A homomorphism (R,R+) −→ (S, S+)

of Huber pairs is a quotient map if R −→ S is a quotient map and S+ is the relative

integral closure of the image of R+ in S.

Definition 2.2. A homomorphism R −→ S of Huber rings is strictly of topologically

finite type if there is a quotient map R⟨T1, . . . , Tn⟩ −→ Ŝ of R̂-algebras.

Example 2.3. Now all Tate algebras k⟨T1, . . . , Tn⟩ and quotients of it are strictly of

topologically finite type over k.

Example 2.4. Sadly, Qp is not strictly of topologically finite type over Zp. One

might think that Zp⟨T ⟩ −→ Qp, sending T to 1/p works, but in fact 1
1−pT is an

element in Zp⟨T ⟩ but this cannot map to anything in Qp.

This notion only includes polydisks and adic spaces cut out by finitely many

equations from polydisks.

Let R be a Huber ring, let M = (M1, . . . ,Mn) be a tuple of finite subsets of R.

Set

Mr
i R := ⟨m1 . . .mra | mj ∈ Mi, a ∈ R⟩

is open. For i ∈ Nn and U a neighbourhood of 0 in R set M iU := M i1
1 · · ·M in

n U .

We call a tuple M = (M1, . . . ,Mn) voluminous if M iR is open for all i ∈ Nn. For a

voluminous tuple M , write T for (T1, . . . , Tn) and

R⟨T ⟩M = {
∑
i∈Nn

aiT
i | for all U nbd of 0 in R: ai ∈ M iU for almost all i}

Remark 2.5. This definition might seem odd, but let us consider the case where k

is a non-archimedean field with norm || · ||, M = {α}, r = ||α||. Then

k⟨T ⟩M = {
∑
i

aiT
i | ||ai||ri → 0}
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i.e. the power series such that the Gauss norm converges.

Example 2.6. We have a surjection

Zp⟨T ⟩p −→ Qp
T −→ 1/p

Indeed, 1
1−pT is not in Zp⟨T ⟩p.

Definition 2.7. Let R −→ S be a homomorphism of Huber rings. Then S is of

topologically finite type over R if there is a voluminous tuple M = (M1, . . . ,Mn) of

finite subsets of R and a quotient map of R-algebras:

R⟨T ⟩M ↠ S.

Proposition 2.8. Any homomorphism R −→ S of Tate rings of topologically finite

type is strictly of topologically finite type.

Definition 2.9. Let φ : (R,R+) −→ (S, S+) be a homomorphism of complete Huber

pairs. Then φ is

1. weakly of topologically finite type if R −→ S is of topologically finite type,

2. of topologically finite type if there is a quotient map

(R⟨T ⟩M , R⟨T ⟩+M ) ↠ (S, S+)

of Huber pairs over (R,R+) for some voluminous tuple M .

Example 2.10. 1. Examples of topologically finite Huber pairs are:

(a) (R,R+) −→ (R⟨T ⟩, R+⟨T ⟩)

(b) for a rational open U ⊂ R, (R,R+) −→ (RU , R
+
U ) (recall RU = R[1/g],

R+
U = R[ f1g , . . . ,

fn
g ]N

2. Examples of topologically finite Huber pairs are:

(a) (R,R+) −→ (R⟨T1, . . . ⟩, R+⟨T1, . . . ⟩)

(b) (R,R+) −→ (R[[T ]], R+[[T ]])

(c) (R,R+) −→ (Rdisc, R
+
disc) (not continuous map)

Definition 2.11. A morphism of adic spaces Y −→ X is locally (weakly) of finite

type if locally on X and Y it is given by a morphism of affinoids induced by a

homomorphism of Huber pairs that is (weakly) of topologically finite type. It is

of (weakly) finite type if in addition it is quasi-compact.
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Definition 2.12. Let (k, k◦) be an analytic (non-discrete) field. A rigid analytic

variety over (k, k◦) is an adic space X of finite type over (k, k◦).

Definition 2.13. A Huber ring A is stably sheafy if for every A-algebra B of topolog-

ically finite type and every ring of integral elements B+ ⊂ B, the Huber pair (B,B+)

is sheafy. An adic space is stable if it is locally the spectrum of stably sheafy Huber

pairs.

2.2 The Fiber product

Proposition 2.14 ([Eug24],9.2). Let X be a stable adic space and f : Y −→ X and

g : Z −→ X morphisms of stable adic spaces satisfying one of the following conditions:

1. X, Y and Z are perfectoid,

2. f is locally of weakly finite type and g is adic,

3. f is locally of finite type,

Then the fiber product Y ×X Z exists in the category of adic spaces and is a stable

adic space. In case (i), Y ×X Z is perfectoid.

Proof Sketch. Reduce to affinoids and maps of Huber pairs,

X = Spa(A,A+)

Y = Spa(B,B+)

Z = Spa(C,C+)

and

(B,B+)

(C,C+) (A,A+)

φB

φC

We only consider the first two cases, in which both morphisms are adic. So there

are rings of definition A0 ⊂ A, B0 ⊂ B, and C0 ⊂ C, with φB(A0) ⊂ B0 and

φC(A0) ⊂ A0, such that for IA ⊂ A0, φB(IA)B0 and φC(IA)C0. We set

D = B ⊗A C

We define its ring of definition D0 as the image of B0 ⊗A0
C0 in D and let D+ be

the integral closure of B+ ⊗A+ C+ in D. Then (D,D+) is a Huber pair whose ideal

of definition is generated by the image of IA in D0. The additional assumptions are

needed to ensure that (D,D+) is sheafy. It then turns out that

Spa(D,D+) = Y ×X Z.
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Example 2.15 (Two closed unit disks). Take two closed unit disksD1 = Spa(k⟨T ⟩, k◦⟨T ⟩)
and D2 = Spa(k⟨S⟩, k◦⟨S⟩), then both are of finite type over Spa(k, k◦) so the fiber

product is given by the tensor product

D1 ×Spa(k,k◦) D2 = Spa(k⟨S, T ⟩, k◦⟨S, T ⟩)

Example 2.16 (Generic fibers). see [Eug24] 6.12

2.3 Etale and smooth

Definition 2.17. Let f : X −→ Y be a morphism of locally noetherian adic spaces.

Assume that f is of locally finite type. Assume that (A,A+) is a noetherian Huber

pair and that I ⊂ A is an ideal with I2 = 0. Write (A/I)+ for the integral closure of

A+ inside A/I and write S = Spa(A,A+) and T = Spa(A/I, (A/I)+).

We say that f is smooth (etale) if, for any (A,A+) and I as above and any

morphism S −→ Y , any Y -morphism T −→ X lifts (uniquely) to a Y -morphism

S −→ X.

Example 2.18. 1. Etale morphisms:

(a) inclusion of affinoids U ↪→ X

(b) Spa(k⟨T, T−1⟩, k◦⟨T, T−1⟩) −→ Spa(k⟨T, T−1⟩, k◦⟨T, T−1⟩) induced by T 7−→
Tn

2. Smooth but not etale morphisms:

(a) Spa(k⟨T ⟩, k◦⟨T ⟩) −→ Spa(k, k◦)

(b) X ×Spa(k,k◦) Y −→ X

3. Not smooth morphisms:

(a) Spa(k⟨x, y⟩/(y2 − x3), k◦⟨x, y⟩/(y2 − x3)) −→ Spa(k, k◦).

3 Analytification

One of the original goals of rigid analytic geometry is to provide a target category for

an analogue of the analytification functor:

{finite type schemes over C} −→ {complex analytic spaces}

X 7−→ Xan := X(C)
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for schemes over non-archimedean local fields.

For an adic space X, let X = (X,OX) denote the underlying ringed space.

Proposition 3.1 ([Eug24],10.1). Let Y −→ X be a morphism of schemes that is

locally of finite type, Z a stable adic space, and Z −→ X a morphism of locally

ringed spaces. Then the fiber product Y ×X Z exists, is a stable adic space, and the

projection

Y ×X Z −→ Z

is locally of finite type.

Remark 3.2. By fiber product we mean an adic space together with a morphisms

Y ×X Z −→ Z, Y ×X Z −→ Y whose underlying locally ringed space Y ×X Z fits

into a diagram and satisfies the following universal property for all adic spaces S

S

Y ×X Z Y

Z X

∃!g

f

Proof Sketch. We may assume X and Y are affine, and Z is affinoid:

X = SpecA Y = SpecA[T1, . . . , Tn]/I

Z = Spa(B,B+).

We restrict to the case where B is a Tate ring with pseudouniformizer ϖ. For k ∈ N
consider Tate rings

B⟨ϖkT1, . . . , ϖ
kTn⟩, B+⟨ϖkT1, . . . , ϖ

kTn⟩

with compatible homomorphisms

B⟨ϖmT1, . . . , ϖ
mTn⟩ −→ B⟨ϖkT1, . . . , ϖ

kTn⟩

for m ≤ k and

B[T1, . . . , Tn] −→ B⟨ϖkT1, . . . , ϖ
kTn⟩

so we a can view I ⊂ B⟨ϖkT1, . . . , ϖ
kTn⟩. Define

Bk := B⟨ϖkT1, . . . , ϖ
kTn⟩/IB⟨ϖkT1, . . . , ϖ

kTn⟩
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and B+
k as the integral closure of B+⟨ϖkT1, . . . , ϖ

kTn⟩ in Bk. The embeddings in-

duce open immersions Spa(Bm, B+
m) ↪→ Spa(Bk, B

+
k ) which we can glue along the

embeddings to

Y ×X Z =
⋃
k

Spa(Bk, B
+
k ).

To show this indeed fulfills the universal property, we need to show for any sheafy

Huber pair (C,C+) with the outer diagram

C

Bk A[T1, . . . , Tn]/I

B A

ψ

φ

that the dashed arrow exists. Let ci be the images of Ti in C. For big enough k, the

elements ϖkci are all contained in C+ as C+ is open and ϖ is topologically nilpotent.

Thus, we obtain a well-defined homomorphism

Spa(Bk, B
+
k ) −→ Spa(C,C+)

mapping ϖkTi to ϖkci, and it is clear from the construction that the corresponding

diagram commutes.

Definition 3.3. Let (k, k+) be an affinoid field. The analytification of a variety X/k

is defined as

Xan = X ×Speck Spa(k, k
+).

Example 3.4 (The affine line). We start with A1 = Spec(k[T ]). If we followe the

recipe above, we are gluing Spa(k⟨ϖkT ⟩, k◦⟨ϖkT ⟩) together, i.e. closed unit disks.

We therefore obtain the adic affine line.

Similarly, the analytification of P1
k is the adic projective line.

3.1 Formal Schemes and analytification

Recall that there is an equivalence of categories ([Eug24], 8.8)

{qc ϖ-torsion free formal k-schemes

of tft localized by admissible formal blowups}
{qcqs rigid k-spaces}

X Xad
η

∼
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sending a formal scheme (identified with the associated adic space Xad) to its generic

fiber. So starting from a scheme X of finite type over a non-archimedean local field

k we can:

1. Take some model X over k◦, and then complete, to obtain a formal scheme X.

2. Identify with the adic space Xad and take the generic fiber Xad
η

so this construction also gives us a rigid analytic k-space.

So given a scheme X of finite type over k we have to associated rigid analytic

spaces Xan and Xad
η . When do they agree?

Example 3.5 (The affine line). Choose X = A1
k.

1. We saw that Xan is the adic affine line A1
(k,k◦), obtained by gluing closed disks

Spa(k⟨ϖkT ⟩, k◦⟨ϖkT ⟩).

2. A formal model is given by Spec(k◦[T ]), with completion the formal scheme

Spf(k◦⟨T ⟩) which has generic fiber Spa(k⟨T ⟩, k◦⟨T ⟩), the closed unit disk.

So these two disagree!

Theorem 3.6 ([Con07], 3.3.9). For X a separated finite type k-scheme, there is a

functorial quasi-compact open immersion of rigid spaces iX : Xη −→ Xan that is

compatible with fiber products. It is an isomorphism when X is k-proper.

Theorem 3.7 (GAGA, [Eug24], 3.19). Let S be a proper algebraic variety over

K, with analytification San. Given a coherent sheaf F on S, there is a functorial

analytification Fan, which is coherent sheaf. Then one has the following:

1. The functor F 7→ Fan is an equivalence of the abelian categories of coherent

sheaves on S and on San, respectively.

2. The two δ-functors F 7→ Hi(S,F) and F 7→ Hi(San,Fan) from coherent sheaves

on S to K-vector spaces are isomorphic.
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