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Adic Spaces — some topics

Warning, I didn’t spend a lot of time typing so some stuff might be wrong.

1 Coherent Sheaves
1.1 small amount of history

Historically the theory of Tate’s rigid analyitic varieties was developed first, and they
were defined as G-topologized spaces (X,Ox) locally looking like a Tate-algebra.
However then the underlying space X carried only a Grothendieck topology, and
was no actual topological space. This resulted in bad sheaf theoretic behaviour (for
example a nonzero sheaf that has zero stalks everywhere). In the theory of adic
spaces we have an actual underlying topological space. This part completely follows
the notes [Eug24].

Assume that (A4, A1) is a noetherian Huber pair. We want to associate a sheaf to

A-modules, ideally taking values in complete topological rings.

Proposition 1.1. Let (4, A") be a noetherian Huber pair and let M be an A-
module. Then the presheaf M (U) = M @4 Ox(U) on X = Spa(A, A1) is a sheaf,
and H(X, M) =0 for all i > 1. Moreover, the assignment M — M defines an exact

functor from A-modules to O x-modules.

If we focus on coherent sheaves, i.e. those coming from finitely generated A-
modules, we obtain a valid definition for general locally noetherian adic spaces, valued

in complete topological rings (with the following topology).

Proposition 1.2. Assume that (4, A") is a noetherian Huber pair and that M is
a finitely generated A-module. If A™ — M is a surjection, we equip M with the
quotient topology coming from this surjection, where A™ has the product topology.
This topology is called the canonical topology and is complete and independent of

the choice of surjection from a finitely generated free module.

The following results implies that fact that a sheaf is coming from a fin. gen.

module does not depend on the cover.

Proposition 1.3. Let (A, A7) be a noetherian Huber pair with X = Spa(A, AT)
and let F be a sheaf of Ox-modules on X. Assume that there is a cover (U;) of
rational subsets and finitely generated Ox (U;)-modules M; such that F|y, = M; for

all i. Then there is a finitely generated A-module M such that F = M.

So now we can define general coherent sheaves.
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Definition 1.4. Let X be a locally noetherian adic space. An Ox-module F is called
coherent if there is a cover (U;) of X by affinoid opens U; = Spa(A;, A;") and finitely
generated A;-modules M; such that Fly, = M; for all 4.

2 Finiteness properties of morphisms
2.1 Morphisms of finite type

Also completely follows the notes [Eug24] chapter 2, part 7.
We would like to define what finite type means. We cannot proceed as for schemes
since if we were to just base it on rings maps of finite type, the Tate algebra k(T') is

not of finite type over k. Instead, we have to take a big detour.

Definition 2.1. A homomorphism R — S of complete Huber rings is a quotient
map if it is surjective, continuous, and open. A homomorphism (R, RT) — (S, S™)
of Huber pairs is a quotient map if R — S is a quotient map and SV is the relative

integral closure of the image of R in S.

Definition 2.2. A homomorphism R — S of Huber rings is strictly of topologically
finite type if there is a quotient map R(T},...,T,) — S of R-algebras.

Example 2.3. Now all Tate algebras k(T1,...,T,) and quotients of it are strictly of
topologically finite type over k.

Example 2.4. Sadly, Q, is not strictly of topologically finite type over Z,. One

might think that Z,(T) — Q,, sending T to 1/p works, but in fact 171PT is an

element in Z,(T") but this cannot map to anything in Q,,.

This notion only includes polydisks and adic spaces cut out by finitely many
equations from polydisks.

Let R be a Huber ring, let M = (My,..., M,) be a tuple of finite subsets of R.
Set

M/R:=(my...mya|m; € M;, a € R)
is open. For i € N and U a neighbourhood of 0 in R set MU := Mli1 ~ MinU.
We call a tuple M = (M, ..., M,) voluminous if MR is open for all i € N, For a
voluminous tuple M, write T for (T4,...,T,) and
R(T)yu = {Z a;T" | for all U nbd of 0 in R: a; € M'U for almost all i}
ieNn

Remark 2.5. This definition might seem odd, but let us consider the case where k

is a non-archimedean field with norm || - ||, M = {a}, r = ||a||. Then

k(T)m = {Z a;T" | []ail[r" — 0}
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i.e. the power series such that the Gauss norm converges.
Example 2.6. We have a surjection
Zp(T)p — Qp
T—1/p
Indeed, 127 is not in Zy(T),.

Definition 2.7. Let R — S be a homomorphism of Huber rings. Then S is of
topologically finite type over R if there is a voluminous tuple M = (M;,..., M,) of
finite subsets of R and a quotient map of R-algebras:

R(T)y — S.
Proposition 2.8. Any homomorphism R — S of Tate rings of topologically finite
type is strictly of topologically finite type.

Definition 2.9. Let ¢ : (R, RT) — (5, 5™) be a homomorphism of complete Huber
pairs. Then ¢ is

1. weakly of topologically finite type if R — S is of topologically finite type,
2. of topologically finite type if there is a quotient map
(R(T)ar, R{T)3,) — (S,57)
of Huber pairs over (R, RT) for some voluminous tuple M.
Example 2.10. 1. Examples of topologically finite Huber pairs are:
(a) (R, R") — (R(T), R™(T))
(b) for a rational open U C R, (R,R") — (Ry,Rf;) (recall Ry = R[1/g],
R =R[L, . LN
2. Examples of topologically finite Huber pairs are:
(a) (R,RT) — (R(T1,...),RT(Ty,...))
(b) (R, R*) — (R[[T]], R*[[T]))
(¢) (R,RT) — (Raise; RY,..) (not continuous map)

Definition 2.11. A morphism of adic spaces Y — X is locally (weakly) of finite
type if locally on X and Y it is given by a morphism of affinoids induced by a
homomorphism of Huber pairs that is (weakly) of topologically finite type. It is

of (weakly) finite type if in addition it is quasi-compact.
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Definition 2.12. Let (k,k°) be an analytic (non-discrete) field. A rigid analytic
variety over (k,k°) is an adic space X of finite type over (k, k°).

Definition 2.13. A Huber ring A is stably sheafy if for every A-algebra B of topolog-
ically finite type and every ring of integral elements B* C B, the Huber pair (B, BT)
is sheafy. An adic space is stable if it is locally the spectrum of stably sheafy Huber

pairs.

2.2 The Fiber product

Proposition 2.14 ([Eug24],9.2). Let X be a stable adic space and f: Y — X and

g : Z — X morphisms of stable adic spaces satisfying one of the following conditions:
1. X, Y and Z are perfectoid,
2. f is locally of weakly finite type and g is adic,
3. f is locally of finite type,

Then the fiber product Y X x Z exists in the category of adic spaces and is a stable
adic space. In case (i), Y xx Z is perfectoid.

Proof Sketch. Reduce to affinoids and maps of Huber pairs,

X = Spa(A4, A™)
Y = Spa(B, BT)
Z = Spa(C,CT)
and
(B, BY)

soBT
(C,0F) «£<— (A, AT)
We only consider the first two cases, in which both morphisms are adic. So there
are rings of definition 49 C A, By C B, and Cy C C, with ¢p(Ay) C By and
wc(Ap) C Ao, such that for Iy C Ag, pp(la)By and o (14)Co. We set

D=B®sC

We define its ring of definition Dy as the image of By ® 4, Co in D and let DT be
the integral closure of BT ® 4+ CT in D. Then (D, D") is a Huber pair whose ideal
of definition is generated by the image of I4 in Dy. The additional assumptions are
needed to ensure that (D, D) is sheafy. It then turns out that

Spa(D,D") =Y xx Z.
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Example 2.15 (Two closed unit disks). Take two closed unit disks Dy = Spa(k(T), k°(T))
and Dy = Spa(k(S), k°(S}), then both are of finite type over Spa(k, k°) so the fiber

product is given by the tensor product
D, X Spa(k,k°) D, = Spa‘(k<57 T>a k® <S7 T>)

Example 2.16 (Generic fibers). see [Eug24] 6.12

2.3 Etale and smooth

Definition 2.17. Let f: X — Y be a morphism of locally noetherian adic spaces.
Assume that f is of locally finite type. Assume that (A, AT) is a noetherian Huber
pair and that I C A is an ideal with I? = 0. Write (A/I)* for the integral closure of
AT inside A/I and write S = Spa(A, A™) and T = Spa(A/I,(A/I)*).

We say that f is smooth (etale) if, for any (A, AT) and I as above and any
morphism S — Y, any Y-morphism T — X lifts (uniquely) to a Y-morphism
S — X.

Example 2.18. 1. Etale morphisms:

(a) inclusion of affinoids U — X

(b) Spa(k(T, T~1), k*(T,T~1)) — Spa(k(T, T~1), k*(T, 7)) induced by T —
T’ﬂ

2. Smooth but not etale morphisms:

(a) Spa(k(T),k°(T)) — Spa(k, k°)
(b) X XSpa(k,k:O) Y — X

3. Not smooth morphisms:

(a) Spa(k(z,y)/(y* —23),k°(x,y)/(y* — 3)) — Spa(k, k°).

3 Analytification

One of the original goals of rigid analytic geometry is to provide a target category for

an analogue of the analytification functor:

{finite type schemes over C} — {complex analytic spaces}

X — X" :=X(C)
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for schemes over non-archimedean local fields.
For an adic space X, let X = (X, Ox) denote the underlying ringed space.

Proposition 3.1 ([Eug24],10.1). Let ¥ — X be a morphism of schemes that is
locally of finite type, Z a stable adic space, and Z — X a morphism of locally
ringed spaces. Then the fiber product Y X x Z exists, is a stable adic space, and the
projection

Y xx Z—Z

is locally of finite type.

Remark 3.2. By fiber product we mean an adic space together with a morphisms
Y xx Z — Z,Y xx Z — Y whose underlying locally ringed space Y x x Z fits

into a diagram and satisfies the following universal property for all adic spaces S

Proof Sketch. We may assume X and Y are affine, and Z is affinoid:

X =SpecA Y =SpecA[Ty,...,T,]/I
Z = Spa(B, B™).

We restrict to the case where B is a Tate ring with pseudouniformizer w. For k € N

consider Tate rings
B(w"Ty,...,@"T,), BT (z"T,...,@"T,)
with compatible homomorphisms
B(w™T,...,@™T,) — B(="Ty,...,@"T},)

for m < k and
B[Ty,...,T,] — B(="T1,...,@"T,)

so we a can view I C B{w"*Ty,...,w"T,). Define

By, := B(w"T\,...,w"T,) /IB(x" T}, ..., @"T,)
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and B; as the integral closure of B*(w*Ty,...,@"T,) in By. The embeddings in-
duce open immersions Spa(By,, B;;,) < Spa(By, B;") which we can glue along the
embeddings to
Y xx Z =|_JSpa(Bx, By).
k

To show this indeed fulfills the universal property, we need to show for any sheafy
Huber pair (C,C7T) with the outer diagram

B+—— A

that the dashed arrow exists. Let ¢; be the images of T; in C. For big enough k, the
elements w”c; are all contained in C* as Ct is open and w is topologically nilpotent.

Thus, we obtain a well-defined homomorphism
Spa(By., B;) — Spa(C, C™)

mapping @w*T; to w”c;, and it is clear from the construction that the corresponding

diagram commutes. O

Definition 3.3. Let (k, k™) be an affinoid field. The analytification of a variety X/k
is defined as
X =X XSchk‘ Spa(k, kJr)

Example 3.4 (The affine line). We start with A' = Spec(k[T]). If we followe the
recipe above, we are gluing Spa(k(ww®T), k°(w*T)) together, i.e. closed unit disks.
We therefore obtain the adic affine line.

Similarly, the analytification of P}, is the adic projective line.

3.1 Formal Schemes and analytification

Recall that there is an equivalence of categories ([Eug24], 8.8)

{qc w-torsion free formal k-schemes o~ o
) o —— {qeqs rigid k-spaces}
of tft localized by admissible formal blowups}

, ad
X x
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sending a formal scheme (identified with the associated adic space X2d) to its generic
fiber. So starting from a scheme X of finite type over a non-archimedean local field

k we can:
1. Take some model X over k°, and then complete, to obtain a formal scheme X.
2. Identify with the adic space ¥*? and take the generic fiber %%d

so this construction also gives us a rigid analytic k-space.
So given a scheme X of finite type over £ we have to associated rigid analytic
spaces X" and f{gd. When do they agree?

Example 3.5 (The affine line). Choose X = Aj.

1. We saw that X2 is the adic affine line A%k’ ko), obtained by gluing closed disks
Spa(k(*T), k° (w*T)).

2. A formal model is given by Spec(k°[T]), with completion the formal scheme
Spf(k°(T)) which has generic fiber Spa(k(T), k°(T)), the closed unit disk.

So these two disagree!

Theorem 3.6 ([Con07], 3.3.9). For X a separated finite type k-scheme, there is a
functorial quasi-compact open immersion of rigid spaces ix : X, — X" that is

compatible with fiber products. It is an isomorphism when X is k-proper.

Theorem 3.7 (GAGA, [Eug24], 3.19). Let S be a proper algebraic variety over
K, with analytification S®". Given a coherent sheaf F on S, there is a functorial

analytification ", which is coherent sheaf. Then one has the following:

1. The functor F — F?" is an equivalence of the abelian categories of coherent

sheaves on S and on S®", respectively.

2. The two d-functors F +— H®(S, F) and F — H*(S*", F1) from coherent sheaves

on S to K-vector spaces are isomorphic.
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