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ABSTRACT. The content of this note is based on [HLV24, Section 5.2 and 5.4].

CONTENTS

1. Background from functional analysis 1
2. Riesz theory 6

1. BACKGROUND FROM FUNCTIONAL ANALYSIS

Definition 1.1. Let A be a ring. A seminorm on A is amap |-|: A — Rxq satisfying the following conditions for
all a,b € A:

(1) [o] =0, 1] =1
(2) |a+ bl <max(|al, |b]) (the ultrametric triangle inequality);
(3) |ab| < lal|b] (submultiplicativity).

A norm on A is a seminorm such that |a| = 0 implies @ = 0. A ring A equipped with a (semi)norm is called a
(semi)normed ring. A Banach ring is a normed ring that is complete with respect to its norm.

Remark 1.2. By definition, the norm is part of the data of a Banach ring. However, we remark that the construction
of eigenvarieties depends only on the topology of the rings involved, not on the specific norm that induces it.

Definition 1.3. Let A be a normed ring. A nonzero element a € A is called multiplicative if |ab| = |a||b| for all
bec A

Definition 1.4. A Banach-Tate ring is a complete normed ring A that contains a unit  such that || < 1 and
w is multiplicative.

Example 1.5. Let K be a non-archimedean field and n € N. The classical Tate algebra 7, := K(X1,...,X,), in
n variables and equipped with the Gauss norm (which is multiplicative), is a Banach-Tate ring.

Remark 1.6. We relate Banach-Tate rings to the rings underlying (analytic) adic spaces, thereby justifying the
terminology. Let A be a complete Tate ring with ring of definition Ay and pseudo-uniformizer w € Ay, and let p
be a prime number. Then we can define a norm by setting, for any a € A,

(1.1) la| :=inf{p™ :a € w" Ay, n € Z},

in which w is multiplicative. In the following, we use the term normed Tate ring to mean a Tate ring whose topology
is also given by a norm. For a complete Tate ring, we refer to the norm of equation (1.1), attached to a chosen
pseudo-uniformizer, as a standard norm.

Moreover, given a Banach-Tate ring A, the underlying topological ring is a complete normed Tate ring: the unit
ball {a € A : |a| < 1} is a ring of definition, and w is a pseudo-uniformizer. Conversely, as noted above, any complete
Tate ring gives rise to a normed ring with unit w such that |w| < 1 and such that w is multiplicative. Thus, we
may think of a Banach-Tate ring as a complete normed Tate ring with a chosen multiplicative pseudo-uniformizer.

Example 1.7. Consider the Huber ring Z,[1"] with the (p, T')-adic topology. On X := Spa(Z,[T,Z,[T]), consider
the rational subset U = X (p’TT> ={z e X :|p(z)| <|T(z)| #0}. Then

o — — )
)

(0x(U), 0% (V) = (Z,[TI/T], Z,[T]ip/T)
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where both completions are taken with respect to the T-adic topology. In this case, Ox(U) is a Tate ring with
pseudo-uniformizer T, and it becomes a Banach-Tate ring when equipped with the norm |f| = sup, |a;|r? for
p_l <r<land f= ZaiTi S Ox(U)

Definition 1.8. Let A be a normed ring. A normed A-module is an A-module M equipped with a function
|| - |l : M — R>g such that for all m,n € M and all a € A:

(1) |lm|| = 0 if and only if m = 0;
(2) lIm + nll < max(([mf], |[n]);
@) llam|l < la] - [[m]].

If A is a Banach ring and M is complete, we say that M is a Banach A-module. A Banach A-algebra B is a Banach
ring equipped with the structure of a Banach A-module.

Definition 1.9. Let A be a normed Tate ring. An A-linear map ¢ : M — N between normed A-modules is called
bounded if there exists C' € R>q such that |¢(m)|| < C|lm|| for all m € M.

Lemma 1.10 ([BGR&4, Section 2.8.1]). Let A be a normed Tate ring with a multiplicative pseudo-uniformizer, and
let M and N be normed A-modules. Then an A-linear map ¢ : M — N is continuous if and only if it is bounded.

Definition 1.11. (1) Let A be a normed Tate ring, and let M and N be normed A-modules. A homomorphism
¢ : M — N is defined to be a continuous A-linear map.

(2) The norm of a homomorphism ¢ : M — N is defined by

] i sup 100,

Remark 1.12. If A is a Banach-Tate ring and M and N are Banach A-modules, then this norm turns the A-module
Hom 4 (M, N) of continuous A-linear homomorphisms into a Banach A-module.

Theorem 1.13 (Open Mapping Theorem, [Morl9, Theorem 11.4.1.1]). Let A be a Banach-Tate ring, and let M
and N be Banach A-modules. Then any surjective continuous A-linear map ¢ : M — N is open.

Lemma 1.14. Let M be a Banach A-module and P a finite Banach A-module. Then any abstract A-module
homomorphism ¢ : P — M is continuous.

Proof. Let m : A" — P be a surjection of A-modules, and equip A" with its usual Banach A-module norm. Note
that 7 is bounded and hence continuous by Lemma 1.10. By Theorem 1.13, 7 is open. Furthermore, ¢ o 7 is
bounded and therefore also continuous. Hence, ¢ is continuous. O

Remark 1.15. Recall that two norms |-|; and |-|2 on aring A are called equivalent if they induce the same topology,
and called bounded-equivalent if for any a € A, there exist constants Cq,Cy > 0 such that Cila|; < |a|z < Cslalr.
Note that for Banach algebras over a non-archimedean field, bounded equivalence is the same as equivalence. But
for Banach-Tate rings, bounded equivalence implies equivalence, but not vice versa. Here is an example: take
A =7, and define |a|; = p~*»(9), |a|y = p~2%(®). See [IN19, Lemma 2.1.7] for cases where the converse holds.

Let (A,|-]) be a Banach-Tate ring and let M be a Banach A-module, equipped with two equivalent norms
|| - |1 and | - [|2, i-e., two norms that induce the same topology on M, or equivalently, such that the identity maps
id: (M, ]| - |l1) = (M, || - ||2) and id : (M, || - ||2) — (M, || - |1) are continuous. By Lemma 1.10, the identity maps
are bounded, and thus there exist two positive constants C; and Cy such that Cy||m|2 < ||mll1 < Ca|im]|2 for all
m € M. Let ¢ : M — M be a continuous A-linear map. Then for all m € M, we have C1|¢(m)|2 < ||[¢p(m)|1 <
161 - [l < Callgll - llmila, which implies that [[]l> < (C2/Cy)ll1. Similaly, we have ]y < (C2/Ch) ]z,
which means the operator norms || - ||; and || - |2 on Hom 4 (M, M) are equivalent.

Notation 1.16. Let [ be a set, and A a Banach-Tate ring. Given a map I — A, written ¢ — a;, we write
lim; o, a; = 0 to mean that for any € > 0, there are only finitely many ¢ € I such that |a;| > €.

Definition 1.17. Let A be a Banach-Tate ring. A Banach A-module M is called orthonormalisable (ONable for
short) if there exists a subset {e; : i € I} of M such that every element m € M can be uniquely written as
m = ) . crae; with a; € A, lim; .o a; = 0, and [m|| = max;er |a;[. Such a subset {e; : i € I} is called an
orthonormal basis (ON basis for short) of M.
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Example 1.18. The classical Tate algebra K(T') over a non-archimedean field K is orthonormalisable with an
orthonormal basis given by {T? :i € N}.

Remark 1.19. Note that the second condition of Definition 1.17 implies that ||e;|| =1 for all ¢ € I. Let c4(I) be
the A-module of functions f : I — A such that lim;c; f(i) = 0, with addition and A-action defined pointwise. The
norm ||f|| = max;er |f(¢)] gives it a Banach A-module structure which is also ONable, with canonical ON basis

: I — A defined by e;(j) =1 if i = j and e;(j) = 0 otherwise.

Let ¢ : M — N be a homomorphism of ONable Banach A-modules M and N, with ON bases {e; : i € I} and
{fj : j € J}, respectively. We define the matrix (a; ;)icr,jes associated to ¢ by writing ¢(e;) = ZjEJ a;, ;i f;- It
is easy to check that [|¢|| = sup, ;[a; |, and that this matrix satisfies: (1) limj ,oc a;; = 0 for all i € I, and (2)
la;,;| < C for some C' € R and all 4, j. Conversely, given a collection (a; ;) of elements in A satisfying (1) and (2),
there exists a unique continuous map ¢ : M — N with norm [|¢|| = sup, ; |a; ;| associated to (a; ;). In particular, we
can measure the distance between two homomorphisms via their matrices. For ¢, € Hom 4 (M, N) with matrices
(ai,;) and (b; ), respectively, we have ||¢ — ¢|| < € if and only if |a; ; — b; ;| < € for all i, j.

Definition 1.20. Let A be a Banach-Tate ring and let M and N be Banach A-modules. A homomorphism
¢ : M — N is said to be of finite rank if its image is contained in a finitely generated A-submodule of IV, and is
called compact if it is the limit of finite-rank homomorphisms in the Banach A-algebra Hom 4 (M, N).

Lemma 1.21 ([Morl19, Proposition 11.4.2.2]). Let A be a Noetherian Banach-Tate ring. Fuvery finitely generated
A-module M admits (up to equivalence) a unique norm making it into a Banach A-module. Any A-linear map
f:+ M — N between finite Banach A-modules is continuous; its image f(M) C N is closed, and the induced map
M — f(M) is open.

Remark 1.22. From now on, assume A is a Noetherian Banach-Tate ring. Let M be an ONable Banach A-module
with ON basis {e; : i € I}. If S C I is finite, we define A% to be the submodule @),y Ae; C M. Consider the

projection
7T52M4)AS, ZaieiHZaiei.
iel i€S
It is natural to interpret the notions of finite-rank and compact morphisms in terms of compositions with mg.

Lemma 1.23 ([Buz07, Lemma 2.3|). Let M be an ONable Banach A-module with ON basis {e; : i € I}, and let P
be a finite A- submodule of M.

(1) There exists a finite subset S C I such that the projection wg : M — AS is injective when restricted to P.
(2) P is a closed subset of M, and hence is complete.
(3) For all e > 0, there exists a finite subset T C I such that for all p € P, we have ||7r(p) — p|| < £|lp|l.

Proposition 1.24. Let M and N be ONable Banach A-modules with ON bases {e; : i € I} and {f; : j € J},
respectively. Let ¢ : M — N be a continuous A-module homomorphism with matriz (a; ;). Then ¢ is compact if
and only if lim;_, o sup;cy |ai ;| = 0.

Proof. Assume that lim;_, . sup;c;|a; ;| = 0. Then for any ¢ > 0, there exists a finite subset S C J such that
SUP;¢s SuP;ey |ai ;| < €, which implies that [[¢ — 75 o ¢[| < e. Hence, ¢ is a limit of finite-rank operators, i.e.,
compact. Conversely, suppose ¢ is compact. It suffices to prove the claim for ¢ of finite rank. If ¢ = 0, the claim is
clear. Otherwise, assume ¢ # 0 and ¢(M ) C P for some finitely generated A-submodule P C N. By Lemma 1.23(3),
for any e > 0, we can choose a finite subset 7' C J such that for all p € P, we have ||7r(p) — pl| < ¢llp||l/||l¢]l, and
hence ||mr 0 ¢ — ¢|| < e. This implies that |a, ;| < e for all j ¢ T and all i € I, and since ¢ is arbitrary, we conclude
that lim;_,oc sup;e; |a; ;| = 0. O

Example 1.25. Consider the Banach Q,-algebra Q,(pT) = {3, an(pT)" : limy o0 an, = 0} C Qp[7T7] equip with
the norm || )", a,(pT)"|| = max, |a,|. By Proposition 1.24, the restriction map

res : Qu( pT) — Q(T Zan pT)" — Z anp™)

is a compact operator. (Here, Q,(T") equipped with the Gauf norm.)
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Construction 1.26. Let M be a Banach A-module with ON basis {e; : ¢ € I'}, and let ¢ : M — M be a compact
endomorphism with matrix (a; ;). For a finite subset S C I, define cg := > ¢, g5gn(0) [[;cq @i 0@y, Where the
sum runs over all permutations o of S. For n > 0, define

cp = (1) Z cs.

SCI, |S|=n

By Proposition 1.24, each c, is well-defined in A'. We define the characteristic power series (also called the
Fredholm determinant) of ¢ as

det(1— X¢) := Y e, X" € A[X].
n>0

Remark 1.27. When M is a finite-dimensional vector space over a field K, the Fredholm determinant det(1 — X¢)
agrees with the usual algebraic characteristic polynomial of ¢.

Proposition 1.28. Let ¢ : M — M be a compact endomorphism on an ONable Banach A-module M with ON
basis {e; : i € I}. Then the characteristic power series det(1 — X¢) = > ¢, X" € A[X] converges for all X € A.

Proof. Let ri,r9,... be the sequence of real numbers obtained by arranging the set {sup;c;lai ;| : j € I} in
decreasing order. By Proposition 1.24, we have limy oo = 0. If S C I with |S| = n, then each product
as,o = [[;cq @io@) satisfies |ag | < r1---7,, and hence |c,| < 71---7p. If @ € Ry is any positive real number,
then |c,|a™ < (r1a@) - - - (rpa). Since r;a — 0, the product tends to zero as n — co. Hence |¢,|a™ — 0, which shows
the claim. 0

Lemma 1.29. Let M be an ONable Banach A-module with ON basis {e; : i € I'}.

(1) If ¢ : M — M, n € N5, is a sequence of compact operators that converges to a compact operator ¢, then
lim,, det(1 — X ¢,,) = det(1 — X ¢), uniformly in the coefficients (with respect to the norm of A).

(2) If ¢ : M — M is compact and the image of ¢ is contained in AS for a finite subset S C I, then det(1 — X ¢) =
det(1 — X ¢|45), where the right-hand side is the usual algebraically defined determinant.

(3) If ¢ : M — M is compact and the image of ¢ is contained in an arbitrary finite A-submodule @ C M, which is
free of finite rank, then det(1—X¢) = det(1— X ¢|q), where again the right-hand side is the usual algebraically
defined determinant.

Proof. We only prove (1); for the proofs of (2) and (3), see [Buz07, Lemma 2.5]. Let (a; ;) and (agz)) be the matrices
of ¢ and ¢y, respectively, and write det(1— X¢) = 3, ¢ X™, det(1— X ) = 3, ¢! X™. Let 0 < e < 1 and let
r1,...,7 be the elements of {sup;c;|a; ;| : j € I} greater than 1. Choose n € Ry such that nry---7, <e. Pick

n large enough so that ||¢ — ¢, < 7. Then |a; ; — ( )| < for all 4, j. In particular, sup,;c; |a; ;| = sup;c; |a | if
sup;e; |ai ;| > n, and sup;c; |a; ;| < n otherwise. For & finite set S C T equipped with an order, we have

(n) | _
las,e — aSo’| = Haw (&) — H zT;(i) = Z (@00 zo(z) H% a(4) Hak o (k)
€S i€S i€S j<i k>i
< nsup H sup (sup la; ;1, sup |a” |)
€S jes
J#i

Hence |ag,, — a(snl)j| < mry---rp < e. Summing over all subsets S of size m, we obtain |¢,, — c$3)| < ¢ for all m,
proving uniform convergence of the coefficients. O

Proposition 1.30. Let (M, || -|]1) and (M,]|-||2) be ONable Banach A-modules. Suppose that the norms || - ||1 and
| - ll2 are equivalent on M, i.e., they induce the same topology and both turn M into an ONable Banach A-module.
Let ¢ : M — M be an A-linear endomorphism. Then ¢ is compact with respect to || - |1 if and only if it is compact
with respect to || - ||l2. Furthermore, if {e; : i € I} and {f; : j € J} are ON bases of (M,] - |1) end (M, ] - ||2),
respectively, then the characteristic power series det(1 — X ¢) with respect to both bases coincide.

1Check that for any & > 0, there are only finitely many subsets S with |cg| > €, which implies that the family {cs} is summable.
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Proof. By Remark 1.15, the operator norms || - ||; and || - ||2 on Homy (M, M) are equivalent. The first claim
follows since the set of compact operators depends only on the topology of Homa (M, M). As in the proof of
Proposition 1.24, we may find finite subsets (T},) such that |71, o ¢ — ¢||1 = 0 and ||7r, 0 p — || — 0 as n — oc.

Applying Lemma 1.29(1) and (3) to the limit ¢ = lim, o 71, © @, the result follows. O
Corollary 1.31. Let (M, || - ||1) be an ONable Banach (A,| - |1)-module and let (M, || - ||2) be an ONable Banach
(A,]-|2)-module. Suppose the norms |-|1 and |- |2 are equivalent on A, and the norms ||-||1 and || -||2 are equivalent
on M. Let ¢ : M — M be an A-linear endomorphism. Then ¢ is compact with respect to || - ||1 if and only if it is
compact with respect to || - ||2. Furthermore, the characteristic power series det(1 — X ¢) with respect to both norms
coincide.

Proof. This follows immediately from Proposition 1.30. O

Proposition 1.32 ([Buz07, Lemma 2.7|). If M and N are ONable Banach A-modules, and if ¢ : M — N is
compact and P : N — M is continuous, then the compositions Yo ¢ and ¢po are compact, and det (1 —X(qbow)) =

det (1 — X (¢ 0 9)).

Definition 1.33. (1) A Banach A-module M is called potentially ONable if there exists a set I such that M is
A-linearly isomorphic to c4(I). A set in M corresponding to {e; = (d;,;); : ¢ € I'} under such an isomorphism
is called a potential ON basis.

(2) We say that a Banach A-module has property (Pr) if it is a direct summand of a potentially ONable Banach
A-module.

Remark 1.34. The notions of being potentially ONable and of having property (Pr) are independent of the chosen
norms: they depend only on the underlying topological A-module structure. In comparison, a Banach A-module
M is ONable if and only if M is A-linearly isometric to c4(I) for some I.

Example 1.35. (1) Let A = Q, and M = Q,(,/p), equipped with its usual norm. Since ||M|| # |A|, M is not
ONable but is potentially ONable.

et e a discretely valued non-archimedean field. en any Banach space over K is potentially able
2) Let K be a di ly valued himedean field. Th B h K i ially ONabl
(cf. [Ser62, Proposition 1]).

Proposition 1.36. A Banach A-module P has property (Pr) if and only if for every surjection f : M — N of
Banach A-modules and for every continuous map « : P — N, the map « lifts to a map 5 : P — M such that

foB=a

Proof. It P = c4(I) for some set I, then to give « is to give a bounded map o' : I — N, i.e. sup;c; ||/’ (3)||n < o0,
and such a map lifts to a bounded map I — M by the open mapping theorem (Theorem 1.13), which gives S.
Conversely, the claim is clear by choosing a surjective f : c4(I) — P for some set I and taking o = idp. O

Remark 1.37. When P is finitely generated, property (Pr) is equivalent to P being a projective A-module.

Construction 1.38. Let M and B be normed A-modules. Define a function
|0 @4 B Roo. ol = int { (e ) }.

where the infimum runs over all representations g = 22:1 m; ® 21 with m; € M and b; € B. This turns M ®4 B
into a seminormed A-module. Its completion is denoted by M ® 4 B and is a normed A-module. If h : A — B
is a contractive morphism of Banach-Tate rings (i.e., |h(a)| < |a| for all @ € A), then B is a normed A-module
and M ®4 B is a normed B-module. In particular, given two complete Tate rings A and B and a continuous map
h: A — B, the image of a pseudo-uniformizer is a pseudo-uniformizer. If we choose a pseudo-uniformizer wy € A
and compatible rings of definition, then equipping A and B with their standard norms makes h contractive.

Lemma 1.39. Let h: A — B be a continuous morphism of noetherian Banach-Tate algebras, and equip A and B
with their standard norms. Then:

(1) If M is a potentially ONable Banach A-module, then M &4 B is a potentially ONable Banach B-module.
Furthermore, if {e; : i € I} is a potential ON basis of M, then {e; ® 1g : i € I} is a potential ON basis of
M &4 B.
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(2) If M has property (Pr), then so does M &4 B.

Proof. Note that (2) follows from (1). For (1), set N = cp(I) and let {f; : ¢ € I} be its canonical ON basis.
The natural A-bilinear bounded map M x B — N sending (>, a;e;,b) to >, bh(a;)f; induces a continuous map
¢: M®4B — N. On the other hand, for n € N written as a limit of elements of the form ZieS bif; with S C T

finite, observe that |Zi€S e; ® bi‘ < C'max;cg |b;| for some constant C' > 0. Hence, as S grows, the resulting

sequence is Cauchy, and its image in M ® 4 B converges to a limit, giving a continuous map N — M @4 B which
is inverse to ¢. O

Corollary 1.40. Let h: A — B be a continuous morphism of noetherian Banach-Tate algebras.

(1) Let M and N be potentially ONable Banach A-modules with potential ON bases {e; : i € I} and {f; : j € J},
respectively. If ¢ : M — N is compact with matriz (a;;), then ¢ ® 1 : M&aB — N®&aB is compact.
Moreover, if (b; ;) is the matriz of ¢ @ 1 with respect to the bases {e; ® 1:i € I} and {f; ® 1:j € J}, then
b@j = h(am) fOT all i € I, _] e J.

(2) If M and N have property (Pr), then ¢ ® 1 is compact.

(3) If M has property (Pr) and ¢ is a compact endomorphism with det(1 — X¢) = > ¢, X", then det(l — X (¢ ®
1) =23, hlcn) X"

Proof. The relation b; ; = h(a; ;) follows directly from the definition. Compactness follows from Proposition 1.24.
Claim (3) then follows from (1) and (2). O

2. RIESZ THEORY

Definition 2.1. Let A be a noetheroan Banach-Tate ring. The ring A{{X}} of entire power series is defined as

A{X} = {Z an X" € A[X] : for all r € Z, nhﬁn;o anw'™ = O} .

Remark 2.2. The characteristic power series det(1 — X ¢) of a compact endomorphism ¢ : M — M of a Banach
A-module M with property (Pr) is an entire power series.

Construction 2.3. Let A be a noetherian Banach-Tate ring, and let @ € A[X] be a polynomial. Define Q*(X) :=
X4eQQ(1/X) € A[X]. For an entire power series S € A{{X}}, we define the resultant R(S,Q) € A as follows:
write Q(X) = X" —a; X" 1 4...+(-1)"a, and let ey, ..., e, be the elementary symmetric polynomials in variables
Ty,...,T,. Then there exists a unique H € A{Th,...,T,}} such that H(ey,...,en) = S(T1)---S(T,). We then
define R(S,Q) := H(ay,...,a,). This extends the classical resultant of polynomials. By [Col97, Lemma A3.7],
R(S,Q) is a unit if and only if S and @ are relatively prime.

Lemma 2.4 ([Col97, Lemma A4.1]). Let A be a noetherian Banach-Tate ring, and let M be a Banach A-module
with property (Pr) and a compact endomorphism ¢ with characteristic power series F(X) = det(1 — X¢). If
Q € A[X] is a monic polynomial, then Q and F are relatively prime in A{X}} if and only if Q*(¢) is an invertible
operator on M.

Definition 2.5. Let A be a noetherian Banach-Tate ring.

(1) Let M be a Banach A-module with property (Pr) and let ¢ be a compact endomorphism with characteristic
power series F. The Fredholm resolvent of ¢ is defined as Rp(X) := F(X)/(1 — X¢) € A[¢][X].

(2) Let K € N. For any power series f = ano anX™ € R[X] over a ring R and s € N, define ASf :=
> n>0 (") an+sX™ € R[X]. We say that a € A is a zero of order k of H € A{X}} if (A*H)(a) = 0 for all

S

s <k and (A*H)(a) is a unit.
Remark 2.6. By [Scr(2, Proposition 10|, if Rp(X) = >, 5o vmX™ with v, € Enda(M), then for all 7 € Rxo,

we have lim, oo ||V ||r™ = 0.

For A®, it is straightforward to verify that it maps A{{X}} to itself. Let k¥ > 1 and write H =1+ a1 X + - -.
Then A°H (a) = 0 implies that —1 = a(a; + aza + - --) which in turn implies that a € AX. By induction on k, we
can show that H(X) = (1 — a ' X)*G(X) where G € A{{X}} satisfies G(a) € A*.
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Proposition 2.7. Let M be a Banach A-module with property (Pr) and let ¢ be a compact endomorphism with
characteristic power series F(X). Let a € A be a zero of order k of F(X). Then there is a unique decomposition
M = N @ M’ into closed ¢-stable submodules such that 1 — a¢ is invertible on M’ and (1 — a¢)* =0 on N. The
submodules N and M’ are defined, respectively, as the kernel and image of a projector lying in the closure (in
Enda(M)) of Al¢]. Moreover, N is projective of rank k, and assuming k > 1, we have that a is a unit and the
characteristic power series of ¢ restricted to N is (1 —a~1X)F.

Proof. Let fs = A®Rp(a). Note that (1 — X¢)Rp(X) = F(X) in A[¢][X]. Applying A®, we obtain (1 —
XP)A*Rp(X) — ¢ A 'Rp(X) = A*F(X). Putting X = a, we have the following relations:

(1 - a¢)f0 = 07
(1—-ag)fi —ofo =0,

(1—-ad)fr—1—Ofr—2=0,
(1—ao)fx — dfe—1=c,

with ¢ € A*X. So for s < k, we have (1 — a¢)**'f, = 0. Set e = ¢ (1 —ag)fx and f = —c '¢fr_1. The
last equation gives e + f = 1, and (1 — a¢)*fr_1 = 0 implies that fe* = 0. Expanding (e + f)* = 1, i.e.
ek + (k;ek_lf—&—---—i—kefk_l —l—f’“) =1, and setting p=e* and ¢ = ke* ' f + .-+ kefF~1 + f*, we have p+ ¢ =1
and pg = 0. This implies that p? = p and ¢? = ¢, which shows that p and ¢ are projections in End4(M). Note that
they both lie in the closure of A[#]. Now set N = ker(p) = ker(1 — a¢)* and M’ = im(p) = im(1 — a¢)*? . Then
(1 —ap)* =0 on N and (1 — a¢) is invertible on M’.

It is clear that N satisfies (Pr), but furthermore (1 —a@)* = 0 on N implies that 1 = ka¢ + - - + (—1)*"Lak¢*,
hence the identity is a compact operator on N. Thus we can choose o : N — N of finite rank such that 1 — « is
sufficiently small. As ||(1—a)"|| = 0, a =1 — (1 — «) is invertible on N, which implies that N is finitely generated.
By Remark 1.37, N is projective. If k = 0, then N = 0 and M’ = M, and we are done. If K > 1, then a is a
unit by Remark 2.6. Let Fy and Fj; be the characteristic power series of ¢ restricted to N and M’, respectively.
Then F = FyFyp. By Lemma 2.4, Fyp and (X — a)® generate the unit ideal in A{{X}}. Hence (1 —a~'X)F
divides Fy in A{{X}}3. Then write Fiy = (1 —a~'X)*D(X) for some D € A[X] C A{{X}}, since N is finitely
generated. From F = (X — a)*G(X), we have D(X) divides G(X) because (1 —a~*X)* has constant term 1 and
hence is not a zero-divisor in A{{X}}. Since G(a) is a unit, D(a) is also a unit. Moreover, (1 —a¢)* =0 on N, i.e.
1=¢(ak+---+ (-1 1a"¢*~1), implies that ¢|y is invertible, i.e. det(¢|n) € A*. Hence, the leading coefficient
of Fiy = det(1 — ¢|xX) lies in AX. Since Fy = (1 —a ' X)*D(X) and a € AX, we have that the leading coefficient
of D(X) lies in AX. Reducing modulo any maximal ideal of A, we see that Fy must be (1 —a~'X)* up to a unit*.
Therefore N has rank k and D € A*5. Since 1 = Fy(0) = D(0), we have D =1, i.e. Fiy = (1 — a1 X)*. O

Remark 2.8. In Proposition 2.7, the zeros of F' correspond to the inverses of the eigenvalues of ¢, and all eigen-
vectors associated with the eigenvalue ¢! lie in N.

Definition 2.9. (1) A polynomial @ € A[X] is called multiplicative if its leading coefficient is a unit, i.e. @*(0) €
A*.
(2) An entire power series S =" . a, X" € A{{X}} is called a Fredholm series if ag = 1.
Theorem 2.10. Let A be a Noetherian Banach-Tate ring, and let M be a Banach A-module with property (Pr).
Let ¢ be a compact endomorphism with characteristic power series F(X). Assume that we have a factorization

F =QS, where S is a Fredholm series, Q@ =1+ --- 4+ a, X™ is a multiplicative polynomial of degree n, and Q and
S are relatively prime in A{X}}. Then:

(1) The submodule ker Q*(¢) C M is finitely generated, projective, and has a unique ¢-stable closed complement
M(Q) such that Q*(¢) is invertible on M(Q).

2Clearly, we have ker(1 —a¢)® C ker(p). For x € ker(p) = im(g), we have (1 —a¢)*(z) € im((1—ad)* oq) =0by (1 —ag)®fr_1 = 0.

3Here F = FxyFyp = (X — a)*G(X) for some G(X), and (X — a)* and Fy; are coprime.

4Here we work on N ® k over a residue field k. (1—a$)* =0, i.e. b = —(1—a¢) is nilpotent and upper triangular, and ¢ = a=1(1+b).
So det(1 — tb) = 1 for any t. Then applying det to 1 — X¢ = 1 — Xa~ (1 +b) = (1 —a"1X) <1 — %b) € A[p][X], we have
det(l — X¢) = (1 — a1 X)4me(NOF), Thus det(1 — X¢) = (1 — a1 X)* and dimx(N ® k) = k.

5D(a) € AX implies that D(X) € x[X] is coprime with 1 —a~!X, hence D(X) € . The leading coefficient of D being a unit implies
that deg(D) = deg(D) = 0.
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(2) The idempotent projectors M — ker Q*(¢) and M — M(Q) lie in the closure of A[¢] C Enda(M).
(3) The rank of ker Q*(¢) is deg @, and det(l — X ¢ |xer 0= (4)) = Q-
(4) The operator ¢ is invertible on ker Q*(¢), and det(1 — X¢ |arq)) = S.

Proof. Consider the operator v = 1 — @Q*(¢)/Q*(0), which is compact and whose characteristic power series has a
zero at X = 1 of order n® (see [C0l97, Theorem A4.3|). Applying Proposition 2.7 to v, we have M = N & M(Q),
where N and M (Q) are defined as the kernel and image of a projector lying in the closure of A[v], and hence in the
closure of A[¢]. Both submodules N and M(Q) are ¢-stable. Furthermore, N = ker(1 — (1 — Q*(¢)/Q*(0)))" =

ker(Q*(¢)/Q*(0))" = ker(Q*(¢))". Thus N is projective of rank n, and Q*(¢)/Q*(0) = (1 — (1 — Q*(¢)/Q*(0)))
is invertible on M(Q), hence Q*(¢) is invertible on M (Q). By Lemma 2.4, the characteristic power series of ¢
on M(Q) and @ are coprime. Denote the characteristic power series of ¢ on N and M(Q) by Fy and Fy(g),
respectively. As in the proof of Proposition 2.7, we have Fy = @, which establishes the first three claims. Note
that det(dlrer @=(4)) = @*(0) € AX, so ¢ is invertible on ker Q*(¢). Since Q(0) = 1, @ is not a zero-divisor. Thus
F= QS = FNFM(Q) = QFM(Q), which implies Q . (S - FIVI(Q)) = 0, hence S = F]M(Q)- O

Definition 2.11. Let A be a Banach-Tate ring with a pseudo-uniformizer w 4, equipped with the standard norm.

(1) Let F = > a,X™ € K[X] be a Fredholm series over a non-archimedean field K with a fixed pseudo-
uniformizer wg. The Newton polygon NP(F') of F is defined as the convex hull in the plane of the points
(n,v(a,)), where v(a,) denotes the valuation of the coefficient a,,. Each segment of the Newton polygon has a
slope, and the multiplicity of a segment is the positive difference between the first coordinates of its endpoints.
We say that a Fredholm series F' has slope < h (resp. > h) if all the slopes of NP(F) are < h (resp. > h).
If a Fredholm series F' lies in A{{X}}, we say that F' has slope < h (resp. > h) if, for every rank-1 point
x € Spa(A, AT) with residue field x(z), the specialization F, € x(z){{X}} has slope < h (resp. > h).

(2) Let M be an (abstract) A-module, and let ¢ be an A-linear endomorphism of M. An element m € M is said
to have slope < h with respect to ¢ if there exists a multiplicative polynomial @ € A[X] such that:

(a) Q*(¢)(m)=0;
(b) the slope of @ is < h.
We let M<;, C M denote the subset of elements of slope < h.

Remark 2.12. Recall that for a polynomial, the slopes of NP(F') correspond to the valuations of its roots. For an
entire power series, combining this with Weierstraf theory, the slopes control the valuations of the zeros of F'.

Lemma 2.13. M«y, is an A-submodule of M, which is stable under ¢.

Proof. 1t is clear from the definition that M« is stable under the A-action and under ¢. To check that it is closed
under addition, it suffices to show that if Q1 and Q)5 are multiplicative polynomials of slope < h, then Q1@ also
has slope < h, which is a well-known fact. O

Definition 2.14. Let A be a Banach-Tate ring with a fixed multiplicative pseudo-uniformizer o 4.

(1) Let F € A{{X}} be a Fredholm series and let h € R. A slope < h-factorization of F is a factorization F = QS
in A{{X}}, where @ is a multiplicative polynomial of slope < h and S is a Fredholm series of slope > h.

(2) Let M be an A-module with an A-linear endomorphism ¢, and let h € Q. A slope < h-decomposition of M
is an A[¢]-module decomposition M = M;, & M" such that:
(a) My is a finitely generated A-submodule of M<p;

(b) for every multiplicative polynomial Q € A[X] of slope < h, the map Q*(¢) : M — M" is an isomorphism
of A-modules.

6For polynomials F and G, define D(F, G) = H?SiG (1—-XF(z;)), where z; are the zeros of G. Extend D to F,G € A{X}} by passing

to the limit. Then det(1 —vX) = D(l -2, F) = D(1 -2 Q> -D(l -2, s). But D(1 —Q*(X)/Q*(0),Q) = (1— X)™,
and D(1 — Q*(X)/Q*(0),5)(1) = R(Q(X)/Q*(0),5) € ALX}*.

"The constant term of Q*(X) is a unit, hence Q*(¢) is not a zero-divisor.
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Proposition 2.15. Let M be an A-module with an A-linear endomorphism ¢, and let h € Q. If M has a slope
< h-decomposition My & M", then it is unique, and M) = M<p. In particular, M<y, is finitely generated over
A. Write M~y for the unique complement. Moreover, the slope decompositions satisfy the following functorial
properties:

(1) Let f : M — N be a morphism of A[¢]-modules with slope < h-decompositions. Then f(M<p) C N<p and
f(Ms=p) C Nsp. Further, both ker(f) and im(f) have slope < h-decompositions.

(2) Let C* be a complex of A[p]-modules and suppose that each C* has a slope < h-decomposition. Then every
H'(C®) has a slope < h-decomposition, explicitly given by H*(C*) = H*(C2,,) © H*(C2,,).

Proof. Clearly, we have f(M;) C Np. As M}, and N}, are finitely generated A[¢]-modules, there exists a multi-
plicative polynomial @ € A[X] of slope < h such that Q*(¢) annihilates both M), and Nj,. Let m’ € M". Choose
my € M" such that Q*(¢)(m1) = m/, and write f(m1) = n+n’, n € Ny, n’ € N". Then f(m') = f(Q*(¢)(m1)) =
Q*(¢)(n) + Q*(¢)(n') = Q*(#)(n') € N*, which proves (1) in the case M = M}, @& M". This implies that the slope
< h-decomposition of M is unique. To show Mj; = Mcy, it is enough to prove that M<, N M" = {0}. For
any © € M<j, N M", there exists a multiplicative polynomial T'(X) of slope < h such that T*(¢)(x) = 0. But
T*(¢) : M"™ — M" is an isomorphism, which implies z = 0. Thus (1) is also complete, and (2) follows from (1). O

Definition 2.16. Let A be a Banach-Tate ring with a fixed multiplicative pseudo-uniformizer w, and let M be
a Banach A-module. Assume that M has a slope < h-decomposition M = M<p, ® Msy. If f: A = Bisa
bounded morphism of Banach-Tate rings such that f(w) is a multiplicative pseudo-uniformizer in B, we say that
the slope < h-decomposition is functorial for f if the decomposition M&aB = (M<j ®4 B) @ (M>,®4B) is a
slope < h-decomposition of M& 4B (using f(w) to define slopes for B). We say that the slope < h-decomposition
is functorial if it is functorial for all such bounded homomorphisms of Banach-Tate rings out of A.

Theorem 2.17 ([JN19, Theorem 2.2.13]). Let (A, AT) be a Noetherian Tate-Huber pair with a fized multiplicative
pseudo-uniformizer @, and let M be a Banach A-module with property (Pr). Let ¢ be a compact A-linear operator
on M, with Fredholm determinant F. If M has a slope < h-decomposition which is functorial with respect to
A — k() for all rank-1 points x € Spa(A, A1), then F has a slope < h-factorization. Conversely, if F has a slope
< h-factorization, then M has a functorial slope < h-decomposition.

Remark 2.18. Theorem 2.17 implies that a slope < h-decomposition of M is functorial if and only if it is functorial
for the natural map A — x(z) for all rank-1 points x € Spa(A4, A™).

Moreover, combining this with the fact that the slopes of the Newton polygon of F' correspond to the valuations
of its zeros, we see that if M has a slope < h-decomposition and m, € M<j ®4 £(z) is an eigenvector for ¢ with
eigenvalue A, € k(x), then A, has slope < h, i.e. v5(\;) < h. Here vy is the w-adic valuation induced by w, i.e.
U (w) = 1.
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