۷ ا د ۱	C		_
Adic	Spa	Ce	2
	1		

- 1) Recap: Huber pairs + affinoid adic spaces
- 2) definition of an adic space (structure sheaf, local rings) + proposities
- 3) Morphisms of adic spaces ("adic" morphisms, finite type/proper/Etak/smooth...)
- 4) a quick survey:

mimicking hes to max-spec? Hausdorff terc connected adic spaces vs formal schemes vs rigid analytic spaces vs Berkovich spaces

essentially all try to mimic (schemes) - (complex analytic spaces)

1) Recap: Let k be a

Def: A Huber ring is a topological ring A with

- $A_0 \subseteq A$ open substitution" ("ring of definition") - $T \subseteq A_0$ ideal ("ideal of definition")

such that

- the topology on Ao is the I-adic topology the ideal I is finitely generated

Examples: Op, Zp [[w], K(T) ("Tate ring")

A°: power bounded elements A°: topologically nilpotent elements

Def: A Huber pair (A,A^+) is a Huberting A with a subring $A^+ \subseteq A^\circ$, open and integrally closed in A.

Examples: (Gp, Zp), (Zp[w], Zp[w]), (K(T), K°(T))

Def.: Adic spectrum

 $Spa(A,A^{\dagger}) = \{x \in Cont(A) \mid |f(x)| \leq \Lambda \quad \forall f \in A^{\dagger} \}$

2004 wat:

later Ao often


```
open immersion if X homeomorphism onto open USY
       and it induces an isomorphism
              (X, O_X, \langle v_x \rangle_{x \in X}) \xrightarrow{\sim} (U, O_Y |_U, \langle v_u \rangle_{u \in U})
                                                      (X, O_X, \{v_x\}_{x \in X})
   sheafy Huber pair (A, A+)
                     (A,A+)
                                         \sim X= Spa(A,A<sup>+</sup>)
                                                  O_{x} = O_{x}
V_{x} = limit of valuation
                                                           determined by x on O_{x}(U)
(U rational)
    Rmk: {vx}xex determines a substreat of Ox
        given by O_{X}^{+}(U) = \{ a \in O_{X}(U) \mid V_{x}(a_{x}) \in \Lambda \text{ for all } x \in U \}
Def: A locally v-ringed space obtained from a Huber pair is call affinoid adic space.
 An <u>adic space</u> is a locally v-ringed space that admits an open covering X = UU; by affinoid adic spaces.
 Just like in the scheme case he can glue affinoid adic spaces to adic spaces.
Example: The affine line
   k non-archimedean field with pseudo-uniformizer GEK
  closed disk of radius 105-11
               Dk(0, |wil) = Spa(k(wnT), k°(wnT))
       indeed for a classical point xx corresponding to
          \alpha \in k via x_{\alpha}(f) = |f(\alpha)| we have
         x_{\alpha} \in \mathbb{D}_{k}(0, |\overline{w}^{\gamma}|) \iff |\overline{w}^{\gamma} \top (x_{\alpha})| \leq 1
                                                 Inclusions: m>n (k<\omnty, k°(\omnty) \rightarrow (k(\omnty), k°(\omnty))
     \hookrightarrow \mathbb{D}_{k}(0,|\bar{\omega}^{n}|) \longrightarrow \mathbb{D}_{k}(0,|\bar{\omega}^{n}|)
```

affine $\mathbb{A}_{k}^{n} = \bigcup \mathbb{D}_{k}(0, |\overline{\omega}^{-n}|)$ (name; infration of the) NOT affinoid: ~> () Dk(0,lū-"1) has no finite subcovering but affinoid adic spaces are quasi-compact Gobal sections of shucture sheaf: () (A) = K((T)) pour series that converge energywhere ex. $\sum_{i=1}^{n} \omega^{i} = k(\{T\})$ other examples Caution open unit disk $D_k(0,1) = \bigcup D_k(0,|\overline{\omega}^{n_m}|) \neq (x \in D_k(0,1))$ T(x) | <1 } global sections subning of kETD st. converge for all a E R of norm <1 projective line: glue two unit disks $D_{\lambda} := Spa(k\langle T \rangle, k^{\circ}\langle T \rangle)$ $D_{2} := Spa(k\langle S \rangle, k^{\circ}\langle S \rangle)$ along (171=1), ((s)=1) via $(k\langle S,S^{-1}\rangle, k^{\circ}\langle S,S^{-1}\rangle) \xrightarrow{\sim} (k\langle T,T^{-1}\rangle, k^{\circ}\langle T,T^{-1}\rangle)$ Indeed Op (Pk) = k Local Huber pairs: Goal: define (Oxx, Ox+) as Huber pair i.e. shuckure of offinoid adic space Def: A Huber pair (A, A+) is called local if - A, At are local - At is the preimage of a valuation ring k_A^{\dagger} of the residue field k_A of A - the valuation V_A of A defined by k_A^{\dagger} is continuous

 $\rightarrow \rightarrow A/m = k_{\Delta}$ UI > Valuation ring One can show me At and Atm= ka Example: (Gp, Zp) $k_A = Q_P$ $k_A^+ = Z_P$ kat defines p-adic valuation (Zp, 7Lp) We have $k_A = \mathbb{F}_p$, $k_A^{\dagger} = \mathbb{F}_p$ kat defines trivial valuation on ka Lemma: Let (A, A+) be a local Huber pair, a = A+ an ideal. Then either asm or mea. Proof: If a &m, take mem, and a = a > m. ~> thus a invertible in A so a 1 EA, a 1 mem SA+ ~> m= 8 2, m ∈ 0 => m ∈ 0. So let ISA+ be an ideal of definition. ~> ISM or MSI Def: (i) I EM "formal case" (ii) I=(0) = MT "discrete case" ~ (Zp, Zp) discrete (iii) m = I "analytic case" ~> (ap, Zp) p-adic on kA Let X be an adic space, $\times \in X$, $Spa(B,B^{\dagger})$ an affinoid nod. (B,J) my of definition Idea: local Huber pair (Ox,x, Ox,x) via colimit But colimit topology = valuation topology defined ~> "define new colimit by weakening condition"

```
Construction: Let p := supp \times \subseteq B
                                                                     y x defres
           Define A := Bp with T:Bp ->> k(p) valuation
            Set A^{\dagger} := \{a \in A \mid \pi(a) \in k(x)^{\dagger}\}
             set T = JA^{\dagger} \subseteq A^{\dagger} as ideal of definition
      Prop.: For two affinoid opens (B, Bt), (B', B't)
                         we have (\hat{A}, \hat{A}^{\dagger}) \xrightarrow{\sim} (\hat{A}, \hat{A}^{\dagger})
      Prop.: The pair constructed above satisfies
                      X_{\star} := \operatorname{Spa}(A, A^{\dagger}) \sim \lim_{\chi \in U} U
       We will use X_x = Spa(O_{x,x}, O_{x,x}^+)
                equipped with not the colimit topology, but
                (O_{X,x}^{\dagger}, IO_{x,x}^{\dagger}) as ring of definition.
            After completion we have (O_{X,x}, O_{X,x}^{\dagger}) \stackrel{\sim}{\to} (\widehat{A}, \widehat{A}^{\dagger}) with this topology
       Examples: For affinoid Huber pairs (Rp,74p)
            Spec \mathbb{Z}_p: (0), (p)
residue field Z_{p(o)} = Q_p \sim only p-adic valuation
analytic so x := p-adic valuation on <math>Z_p w boal Huber (Q_p, Z_p)
      residue field \mathbb{Z}_p/p) = \mathbb{F}_p \rightarrow anly trivial valuation
ratific so \times with p(x)=0 w. |acal Huber (2p, 2p) a(x)=1
      Analytic adic spaces:
   Def: Let (A, A^+) be a Huber pair.
          xe Spa (A, A+) is called analytic if supp x is not open
     Let X be an adic space.
          x \in X is called analytic, if it has affinoid nod Spa(A,A^{\dagger}) s.t. x \in Spa(A,A^{\dagger}) is analytic
```

An adic space X is called analytic if all points are analytic
- later, rigid analytic spaces
Lemma: A morphism f:Spa(A,A+) -> Spa(B,B+) of adic spaces
non-analytic points to non-analytic points.
Proof: f is given by φ : (B,B^+) \longrightarrow (A,A^+)
If $supp(x) \subseteq A$ is open then so is $c_i^{-1}(sup_i(x)) = supp(f(x))$.
3) Morphisms of adic spaces:
Recall that a morphism of adic spaces is a morphism
$(X, O_X, \langle v_x \rangle_{x \in X}) \longrightarrow (Y, O_{Y_1} \langle v_y \rangle_{Y \in Y})$
where $(X, O_X) \longrightarrow (Y, O_Y)$ is a marphism of locally ringed spaces and $V_X _{O_{Y,Y}} = V_Y$ on $O_{X,X}$.
For affinoid it is induced by a morphism of
Huber pairs (A, A+) -> (B, B+)
exist rings of def. s.t. $\varphi(A) \leq B_0$, $\varphi(A^{\dagger}) \leq B^{\dagger}$
Def: A homomorphism of Huberrings q: R->S is called add
if there exists mas of definition R_0 , S_0 st. $\varphi(R_0) \subseteq S_0$
and for an ideal of def., $\varphi(I)S_0$ is an ideal of def.
A morphism of adic spaces is adic if it is locally defined
by adic morphisms of Huber pairs.

Rmk: topology of S is entirely determined by R!

Lemma: An adic morphism takes analytic points to analytic points.

Proof see HW

				fin. g								
										i 26		
2,	hama Cof	->5 ->5 +he	is Wa	a gi	otient prii	2 v S N S	تة , S	t rela	ative	at ma	P ral (Josue
										of R		
Ŧ))	defini	Hion	of "	'Finite	.Tn, 2 ty	Tn> pe"	See	' -	ot k	- 81g	ebras
			LV4				1					
•												
Fiber of		•	•	ies:		` nice	n C	a (e C	> f.0	fectoic	styl	ices R
	•			exisa paraled				معد	> 9	adic t ue	علالع	Eure
				, locally				e		1	ype	
				,								
				\								
	K,	,		ield, 1		(0)	pen	ualua	tian s	soloring		
	Clat	, smc	oth,	étale	√ 8	//	fting					

Finiteness:

Def: Let $f: X \longrightarrow Y$ be a marphism of locally finite type, locally noeth adic space A,A^{\dagger} Noetherian Huber pair I:A, $I^2=0$ $S=Spa(A,A^{\dagger})$, $T=Spa(A/I,(A/I)^{\dagger})$ for any such A, $S=Spa(A,A^{\dagger})$, $S=Spa(A,A^{\dagger})$, S

4) Comparison:
Analytification: For $(2, O_2, \langle v_2 \rangle_{z \in Z})$ write $Z = (Z, O_2)$ Fiber product with schemes
Fiber product with schemes locally ringed space
Let Y -> X be a morphism of schemes that is locally of
finite type, 2 a stable adic space, 2 -> x marphism of
locally ringed spaces. Then the fiber product Yxx 2 exists
is a stable adic space, and the projection
Y xx Z -> Z
is locally of finite type.
Def: Let (k, k+) be an
affinoid field.
The analytification of a variety XIk is defined as
$X^{an} := X \times_{speck} Spa(k, k^{+})$
construction amounts to duing k(wkT,, wkTn)/_
Example: affine line Ak (variety!)
glue affinoids Spa(k<\var{\varant}), k°<\var{\varant})
via indusion
$\Rightarrow (A_k^n)^{an} = \bigcup_n Spa(k\langle \tilde{\omega}^n T \rangle, k^{\alpha}\langle \tilde{\omega}^n T \rangle)$
= A(k) adic affine line
$A_k^{12h} \longrightarrow Spa(k,k^\circ)$
A Spec k

Formal schemes:
A metherian ring endowed with I-adic topology
formal spectrum $X = Spt A$
- underlying topological space is all open prime ideals (i.e. Spec A/I)
- Shucture sheaf O_{\downarrow} (Spf A_{f}) = \hat{A}_{f}
"infinitesimal thickening" of a standard scheme
> glive to locally noetherian formal schemes
Thm: There is a fully faithful functor from locally noetherian
formal schemes into category of adic spaces. It maps
$A \longmapsto Spa(A,A)$
Given a locally noetherian formal scheme, we can construct
$(x,0x) \xrightarrow{ix} (x^{2d}, 0x^{2d}, 0x^{2d}) \xrightarrow{r_x} (x,0x)$
O^{\times} of $= O^{\times}$ of
ix: maps open owne ideal I to trivial valuation
on $k(p)$ (i.e. a point $\times \in \times^{3d}$ $w. spp \times = p$)
on $k(p)$ (i.e. a point $\times \in \times^{3d}$ in $spp \times = p$) $T_{\times}: \times \in \times^{3d}$, we have
$k(x)^{+}$ valuation ring in $k(x)$
and $\triangle \longrightarrow k(x)$
> image in k(x)+ since lax) E1 YaEA
therefore we have a map φ : Spec $k(x)^+ \longrightarrow \text{Spec A}$
So we send x to $\varphi(m)$ where $m \in k(x)^+$ urigine closed point
$\rightarrow r_{x} \circ i_{x} = id$

Rigid analytic varieties:
Def: Let (k,k°) be an analytic field (field with valuation topology)
A rigid analytic variety over (k, k°) is an adic space X
of finite type over (k, k°).
original theary
Det: A formal model of a rigid analytic variety one
(k,k°) is a formal scheme of over spa(k°,k°)
with $\chi_{n} = \chi$.
with $\chi_{r} = \chi$. Siven a formal model χ , blowing up a long special trivial on the a sheaf of ideals χ , s.t. $\chi_{r} = \chi_{r}$ we obtain another
a sheaf of ideals of , s.t. used we obtain another
formal model.
Thm (Raynaud)
There is an equivalence of categories
(qc w-tasian free formal k°-schemes) of topologically finite-type
localised by admissible formal blowps
~> {qcqs rigid k-spaces}
7 -> 7/2 (generic fiber)
In paticular, for gcqs nigid k-spaces, formal
models always exist.
Further, given a gcqs rigid k-space X
and a formal model X; we have a specialisation map
$Sp_i: X \longrightarrow X_i (X \longrightarrow X^{ad} \xrightarrow{f_X} X)$
Thm: $Sp = (Sp_i)_{i \in I} : X \longrightarrow \lim_{i \to \infty} X_i$ is a homeomorphism
nd induces an iso
$(x, O_{x}^{+}) \cong \lim_{\leftarrow} (X_{i}, O_{X_{i}})$

```
Borkovich spaces:
             Glued locally from affinoid algebras A (quatients of Tark alg.)
                            M(A) = { multiplicative seminants}
                   topology: weakest top. s.t. XI-> 1x(f) is continuous
                                                                                                                                                                                     Ate Y
                    Given an adic space X
                           the separated quotient \chi^B is a Berkovich space
                       ~> separated quotient is the largest quotient s.t.
                                X is Hausdorff.
                       In particular, we identify every point to its maximal
                         generization
                               ~
                                Closed unit disk Spa (C_P(T), C_P(T)) = \{x \in Cant(C_P(T)) \mid T(x) \mid \leq 1\}
The chasical name supp(x) T_{x}

X_{x}

                                                                                                                                                                                          closed?
                                                                                                                                                   A_{x}/m_{x}
                                                                                                                                                                                              closed
                                                                                                                                                                                        non-closed
                                                                                                                                                                                          closed
                                                                                                                                                                                            closed
                                                                                                                                                                                     closed
                             -> only rank 1 paints left
```