Recall: Tate ving and affinoid alg. 2 Non-orch, R val ring of 2, Def. n- variable Tate ring In / x is $T_{n}(x) = \left\{ \sum_{J \in \mathbb{Z}_{\geqslant 0}^{n}} a_{J} X^{J} \in \mathcal{L}[[X_{l}, \dots, X_{n}]] : [a_{J}] \rightarrow 0, J \rightarrow \infty \right\}$ >< X, ---, X, > The Gauss norm on In is $||\sum_{a_{T}} a_{T} X^{J}|| = ||\max_{a_{T}} a_{T}||$ $(||f|| = 0 \iff f = 0)$ Easy to check Gauss norm is a non-arch val on 2-Bunach dg. Ta(x). We can evaluate $f \in T_n(x)$ at closed unit cycle of $\mathbb{Q}_p(\mathbb{C}_p)$, which will give us a model of closed unit ball of Cp. E.x. MCQe(XS) = Ze M(Cr<X,Y>/pY-X)) = POG. Thm (Weierstrass preparation) There is a dijection $\{ d \in C_{\rho} : \|\alpha\|_{\rho} \leq | \} \stackrel{[i]}{\longleftarrow} S_{\rho \in Max}(C_{\rho}(X)) = M(C_{\rho}(X)).$ $\alpha \longleftrightarrow \langle X - \lambda \rangle$ Def. For a 2-alg. A. A ic called a 2-affinoid alg. if II = Tu(2/. s.t. $A \simeq T_n(x)/I$ We can apply a norm on A by $\|\overline{o}\| := \inf_{\alpha I = \overline{\sigma}} \|\alpha I\|, \quad \forall \overline{\alpha} \in A \simeq T_n(x//I).$

Tate ring and 2- Affinoid alg. have many nice proportios, can be found at [Convad]

Thm. $\mathbb D$ In is noetherian, regular and UFD. \forall m \in Spec Max (T_n) , the local ring
[Tn)m has dim. n, and [Tn/m: x] < 00.
In 1s Jucobson: every prime ideal pof In is the intersection of maximal
ideals confaining it.
3) Any ideal I = Tn is closed.
But there is a decomposition disjoint!
{ X ∈ Cp: x ≤ } = { x ∈ Cp: x = } UD { x ∈ Cp: x ≤ p-s}
1
Spec Max (Cp < X, X-1>). Spec Max (Cp < xps >).
$C_1 < X_1, X_2 > / (X_1 X_2 - 1)$
All pieces are offinoid, this will give a terrible sheaf theory since we can get
a global section of Spec Max (Cp <x>) which is non-zero at boundary but vanish</x>
inside, such function does not analytic from Weverstruss preparation theorem.
Tate avoid this by only consider "admissible open subset" and "admissible open cover"
which is a Gro. to po to some extent.
Def. For a X-affinoid alg. A, a vational domain U of M(A) of the form
$U\left(\frac{f_1,\cdots,f_n}{g}\right) = \left\{ x \in M(A): f_1(x) \leq g(x) \neq 0 \right\}$
stalk of f ; at x , element in $\chi(x)$,
Stalk of to at x, element in X(x), has a Unique norm from J.
$U \subseteq M(A)$ is admissible open if $U = \bigcup_{i \in I} U_i$. Vi ove vational domain, and

for any affinoid map $A \longrightarrow B$, s.f. in $(MCB) \longrightarrow MCA) \subseteq U$, than
this image lies in finitely many Ui.
We can define admissible cover in a similar way, which makes
d α ∈ Cp: α ≤ } = d ∈ Cp: α = d ∪ (α ∈ Cp: α ≤ p-5)
Deing not adm.
Def. M(A) with adm. open subset and adm. open cover consist a site, which
is called the G-topology on M(A).
Thm (Tate) $O(U(\frac{f_1,,f_n}{g})) = A\langle T_1,,T_n \rangle / (gT_1 - f_1,,gT_n - f_n)$ defines a
sheaf on this site.
Def. G-topologized space CM(Al, O) is called an affinoid space, a locally ringed
G-topologized space is called rigid analytic space if it is locally an affinad space.
Huber's adic space goes furthur:
Tate's rigid analytic space Huber's adic space
CA "to pological" CA
Spec Max (= supp) Spa (valuation spectrum).
vational domain [almost the same)
affinoid alg. (general) topological ring will always have a Unit pseudo-uniformizor.
will always have a Unit Pseudo-Uniformizor.

Huber ring

Def. A topological ring A is called a Huber ring if it contains an open
subring Ao, with $I \subseteq A_o$, s.t.
1) to pology on A. Chance on A) is I-adic to pology.
D T is f. g.
\mathbb{D} I is $f.g.$ $\begin{cases} a+I^n \\ a \in A \end{cases}$ Consist a top. basis
Ao is called a ving of definition, I is called an ideal of definition.
$X\subseteq A$ is alled bounded if for any open neighborhood V of V of V is alled bounded if V or V is alled bounded if V or V is alled bounded if V or V is all V is alled bounded if V or V is all V is
s.t. n.v e U, Yxe X, ve V.
Propo. A is a Huber ring, then Ao = A is a ping of def. (=) Ao is open
and bounded
Def. $f \in A$ is colled power-bounded if $\{f^n\}_{n \ni l}$ is bounded
$A^{\circ} := \{ f \in A : f \text{ is power-bounded} \}$
The second of th
Lemma. Let A be a Hubor ring with ring of def. A., f & A., than
Ao[f] is a ring of def.
Only need to show A, [f] is open and bounded since $I \subseteq A_0 \subseteq A_0 \subset f$,
it is open. For any ideal of def. $I = A_o$, since $\{f^m\}$ is bounded, $\exists n > 0$,
i.t. $f^m \cdot I^n \subseteq I$, $\forall m \ge 1$. So that we have $A_o[f] \cdot I^n \subseteq I$, which means $A_o[f]$ is

bounded.
Propo. Let A be a Huber ring, then
A° = U A. A, ∈ A
$A_{\bullet} \subseteq A$ Ving of def.
A° is open and integrally closed in A.
$A_0 \subseteq A^\circ$, and $\forall f \in A^\circ$, ring of def. A, A, A, of of is ring of def.
If fell is integral over A°, that is
$f'' + a_m f^{n+} + \cdots + a_o = 0, a_i \in A^o.$
Let a, E.A., A. is a ging of def. Then A. [am, a, 7 15 also a ring of lef.
But then A . Ef 1s open and bounded, hence $f \in A$.
Def. $f \in A$ is called topologically nilpotent, if for any $V^n \subseteq A$. $F^n \in V$
for N >> 0.
$A^{00} = \{ f \in A : f \text{ is top. Nil.} \}$. Easy to see $A^{00} \subseteq A^{0}$.
Propo. Let A be Huber ring, then
$A^{\circ \circ} = \bigcup_{I \subseteq A} I.$
$I \subseteq A$ ideal of def.
and A" is a radical ideal of A".
\mathcal{T} Λ Λ Λ Λ
E.x. A (A, I) A° A°°
$Q_{\rho} \qquad (Z_{\rho}, \rho^2) \qquad Z_{\rho} \qquad (\rho)$

```
top given by
Gauss norm ( CP[W] ( OG, [W], POG, [W]) OG, [W]
                                                                     M ED TW]
with t-adic & (Lt po)) ( XIII po)) LII to )
                                                                      m & teting.
                                                                      PZCP2
with 
\mathcal{Q}

p-adic top.
   Next we will consider valuation spectrum of Huber rings. We need to consider
 higher rank valuation there in stead of just norms.
 Valuation, Conf [A/
  We will use I denote an ordered abelian g.p., write the group operation multi.
  Def. Voluation on a mag A is a map 1.1: A -> [U (o), s.t.
                           |fg| = |f| \cdot |g|
                   [f+9] < max { f1, [9] }
   and |D| = 0, |C| = 1
  Note that I can embed into not just 1800, but also (1800).
  We will use 1/11 to denote the norm on A defining top., 1.1 denote some val on A.
  inverse image of !! is called the kernal of !!.
E.x. trivial val: [a] = \begin{bmatrix} 0 & a = 0 \\ 1 & 0 \neq 0 \end{bmatrix}, or A \longrightarrow A/p \xrightarrow{1 \cdot leviv} \{0, 1\}
[.]p. |-[w on Q.
\hat{Q}_{p}[[t+]] \longrightarrow |R_{>0}, \quad f(t) = \sum_{n>u} a_n t^n, \quad q_m \neq 0 \longrightarrow Y^{-m},
E \times A = C_{\rho}(w), \quad |f|_{\lambda} := ||f(\omega)||_{\rho}, \quad \forall \, \lambda \in \mathcal{O}_{C_{\rho}}.
 has karnol (W-d>
```

```
\forall \lambda \in \mathcal{O}_{\mathcal{C}_{\mathbf{I}}} let f(w) = \sum_{n \geq 0} b_n (w - x)^n, then
                           |f|_{d,T} := \max_{i>0} ||b_i||_{Y^i}, \quad 0 < v < 1.
  In particular, les is the Gauss norm.
E.x. P= IR>o × IR>o, with 字典序, that is:
                       (a,b) > (c,d) \iff a>c, or a=c \text{ and } b>d.
   \forall \lambda \in \mathcal{O}_{\mathcal{C}_{\bullet}}, \ 0 < v \leq l, \ 0 < \epsilon < l, \ f(\omega) = \sum_{n \geq 0} b_n (\omega - \alpha)^n
                                 Cp <w>> -> P
                                      f \rightarrow |f|_{\alpha, \gamma^{-}} := \max_{i \neq 0} (||b_n||_{p} \cdot \gamma^n, \xi^n)
                                                                               0<2<1, pick the lowest
                                                                                  degree term.
                                                                   max (||bn||p.rn, g-n)
                                       f \rightarrow |f|_{d,rt} :=
                                                                                  pict the highest degree
   Def. |\cdot|:A] \longrightarrow \Gamma is a val. we call |\cdot| is conti. if \forall \gamma \in \Gamma,
                          U_{y} := \left\{ a \in A \mid |a| < y \right\} \subseteq A
   Cont(A) := \{ conti. val. on A \} / \sim , Spv(A) := Cont(A disc).
 E.x. A \longrightarrow A/p \xrightarrow{1 \cdot ltriv} \{0, 1\} is conti. iff p \subseteq_{pan} A.
Let CP(W) with top. defined by Gauss norm, [ ] a, | - | a, y is conti. for 0< r < 1.
1. Itio on ap is not conti
```

Yackso, note that for fixed xEOG, o< Y < 1,
$ f _{d,r} \leq a \implies f _{\alpha,r} \leq (a, \square)$
Hence I-la, r- is also conti
$\forall x \in Cont[A], f \in A.$ [fix] $\in \Gamma_x$ is the valuation x at f .
Def. For f., "; fn & A, s & A, we can define
$U(\frac{f_{i}, \cdots, f_{n}}{s}) := \{ x \in Sp_{i}(A) \mid f_{i}(x) \leq g(x) \neq 0 \}$
as open basis of Spv (A), and equip Cont (A) with induced top.
need (fi,, fn, g) is an open ideal
Lemona. Supp: Spv(A) → Spec(A)
$\Rightarrow \text{supp}(x) = \{ f \in A : f(x) = 0 \}$
is courting, and $\forall s \in A$, supplied $D(s) = D(\frac{s}{s}) = (x \in Spv(A): [six] \neq o)$.
YpeSpecA, there is a homeomorphism
supp-'(p) ~ Spv (Frac (A/p))
S A -1.1 PU(0)
A 1:1 PU(0)
$A/p \longrightarrow Frac(A/p)$
E.x. trivial
P-adic · ·
. Spa Zp

0

P

Def. YETUlu) is called cofinal if YGEP, Yn < 5 for n >> 0.
Thm (continuity criterion) Let A be Huber ring, 1-1: A -> [be a val,
then TFAE
D1-1 is conti
D f e A is top ni(potent =) f1 is cofinal
\mathbb{B} Let (A_0, I) be a pair of def. $I = (f_1, \dots, f_d)$, than $ f_i $ are
all cofinal and $ ff_i < 1$. $\forall f \in A_2$
$\mathbb{D} \Longrightarrow \mathbb{D}$: $\forall f \in A$ top. $nil.$, $Y \in \mathbb{P}$, then U_Y is open, hence $f'' \in U_Y$, $n > > 0$.
$=$ $ f^n < \gamma$, hence $ f $ is cofinal.
$\emptyset \Rightarrow \emptyset$: since $I \subseteq A^{\circ \circ}$. If i) are all cofinal. Since $\forall f \in A_{\circ}$, $f \in I$,
we have $ ffi < 1$.
$\emptyset \Rightarrow \emptyset$: $\forall \gamma \in \Gamma$, let n large enough s.t. $ f_i ^n < \gamma$, $(\leq i \leq d)$. We will
prove $I^{nd+1} \subseteq U_Y$ to show that $ \cdot $ is conti.
Typerated by $g = f \int_{-\infty}^{\infty} f \int_{-\infty}^{\infty} f \int_{-\infty}^{\infty} A_0$, $f \in A_0$, $M_1 + \cdots + M_n = Md + 1$.
easy to see $g = f' f_i \cdot f_j^n$, and $\lfloor g \rfloor < \lfloor f_j^n \rfloor < \gamma$.
$E.x.$ $A = C_{p}(w)$, we can choose $CO_{q}(w)$, $PO_{q}(w)$ as ring of def.
from above, val. 1 is conti.
On the other hand, I lat and I later ave in the [1-late] under the top on Cont (A)
given above.

and all rational open subset are 9.c.
proof can refer to Morel, Adic space. Corollary [11.2.4
tunsor product: (B, B+) (C, C+)
(A, A^{\dagger})
$ (B \otimes C, \text{ in } L B^{\dagger} \otimes_{A^{+}} C^{+} \longrightarrow B \otimes C)). $
complement: Given ving of def (Ao, I), $A = \lim_{n \to \infty} A/I^n$,
$(A, A^{\dagger}) \longrightarrow (A, A^{\dagger})$, and we have
Thm. (Huber) Spa (A, A+) => Spa(A, A+). THLV24.
Thin Cadic - Null_) Given Huber pair (A, A+), (hapter 1, 4.3,44)
$A^f = \{ f \in A : f(x) \le l, \forall x \in Spa(A, A+) \}.$
CHLV24, Chapterl, Thm 4.2).
Ex. Let A = Cp <w>,</w>
$D = \{x \in Cont(A) : \{w s \leq 1\}$
adic unit disc = Spalle(N), OG(N)
over Cp. easy to see 1-1, rt not in Spal Cp < N>, Oq < W>)
E.x. Let $A = \lim_{n \to \infty} A/I^n$, I f.g., then the trivial val. in $Spa(X, X)$
1s the same as Spf (A).
Structure (pre)-sheaf.
Now given $X = \operatorname{Spa}(A, A^{f})$, we want to give a sheaf of complete topological
$Ving \mathcal{O}_{X} = \mathcal{O}_{X}^{+} \text{on} X s. \ t.$
$O_{\times}(X) = \hat{A}, O_{\times}^{\dagger}(X) = \hat{A}^{\dagger}.$

Point of D. No to denote of M D. We will use 1. d,r , etc. Let $f(w) = \sum_{n \ge 0} a_n w^n = \sum_{n \ge 0} |a_n(w-x)^n| \in C_p(w), \quad x \in O_{\epsilon_p}$ recall | f(xa) = ||f(x)||, with kennal <w-2> f(xa,r) = max | bn | r" Let $D_r(d) = \frac{1}{2} d' \in C_P : |d-d'| \leq r$, then we have $|f(x_{d,r})| = \sup_{a' \in P_r(a')} |f(a')||_{q}$ Let {Di} be an decreasing sequence of disc in Oco, than $f(x_0) := \inf_{i \ge 0} |f(x_0)|$ is also an element in D, in particular, Di can be empty. Ax/mx Type supples unl. g.p. Fo closed PQ p a Tro (t) you closed Na, r (repa) (o) payZ xar(r&pa) (o) To $\chi_{\mathfrak{g}}$ PQ x(=1) Z F x à (repa) $\lambda \in (A' \subset \overline{F_r}), \quad f(x_{s,r}) := (|f(x_{s,r})|, (\frac{1}{2})^{ord} \lambda^{\frac{1}{r}}) \quad f \in \mathcal{O}_{C_r}(w)$

$ P(X_{*,v}) = (\frac{1}{r}, 1)$
Easy to see that x2, = 1.12, r- from above.